Lecture 12

In this lecture weill prove several theorems about permutations and cycles.

Theorem Let $\sigma \in S_{n}$. Then σ can be written as a cycle or as a product of disjoint cycles. Proof The proof of this theorem is essentially the procedure of writing σ in the cycle notation which we saw in the last lecture. We start with choosing any element $a_{1} \in\{1, \ldots, n\}$ and look at $\sigma\left(a_{1}\right)=a_{2}$ (say) and form $\left(a_{1}, a_{2}, \ldots\right)$. Then we look at $\sigma\left(a_{2}\right)=a_{3}$. If $a_{3}=a_{1}$ then we write $\left(a_{1}, a_{2}\right)$ otherwise we write $\left(a_{1}, a_{2}, a_{3} \ldots\right)$. We carry on this proceduce until we arrive at $\sigma\left(a_{m-1}\right)=a_{1}$.

We know this must happen because $\{1,2, \ldots, n\}$ \because a finite set so weill start getting repetitions. If we have exhausted all the elements of $\{1,2, \ldots, n\}$ then σ can be written as a cycle $\left(a_{1}, a_{2}, \ldots, a_{m-1}\right)$.

Otherwise, we pick any element b_{1}, not appearing ir $\left(a_{1}, a_{2}, \ldots, a_{m-1}\right)$ and repeat the above procedure, i.e., we now form

$$
\left(b_{1}, b_{2}, \ldots, b_{k-1}\right)
$$

Claim:- $\left(b_{1}, b_{2}, \ldots, b_{k-1}\right)$ will have no elements common with $\left(a_{1}, a_{2}, \ldots, a_{m-1}\right)$.
Proof of the claim Suppose $b_{i}=a_{j}$ for some i and $j \Rightarrow \sigma^{i-1}\left(b_{1}\right)=\sigma^{j-1}\left(a_{1}\right)$

$$
\Rightarrow \quad b_{1}=\sigma^{j-1-(i-1)}\left(a_{1}\right)=\sigma^{j-i}\left(a_{1}\right)
$$

$=0 \quad b_{1}=a_{t}$ for some t which is a contrad--iction because b, was chosen so that it has
not appeared ie $\left(a_{1}, a_{2}, \ldots, a_{m-1}\right)$.

Continuing this process, until we exhaust all the elements of A, σ will appear as

$$
\sigma=\left(a_{1}, \ldots, a_{m-1}\right)\left(b_{1}, \ldots, b_{k-1}\right) \cdots\left(c_{1}, \ldots, c_{n-1}\right)
$$

i.e., σ is written as a product of disjoint cycles.

We know that S_{n}, if $n \geq 3$ is mon-abelian. But does any of it's elements commute?

Theorem 2 (Disjoint cycle commutes)
Let $\alpha=\left(a_{1} \ldots, a_{m}\right)$ and $\beta=\left(b_{1}, \ldots, b_{k}\right)$ be two disjoint cycles in S_{n}, i.e., they have no entries in common. Then $\alpha \beta=\beta \alpha$.

Proof This is left as an exercise. Just remember the group operation in S_{n} is composition of functions and $\alpha \beta$ and $\beta \alpha$ are bijective fun--actions on $\{1, \ldots, n\}$.

Theorem 3 (Order of any element in S_{n})
Let $\sigma \in S_{n}$. Write σ as a product of disjoint cycles using Theorem 1 . Then $\operatorname{ord}(\sigma)=$ least common multiple of the length of the cycles.

Proof Let's first understand what are we trying to prove. If $\sigma=\left(a_{1}, \ldots, a_{m}\right)\left(b_{1}, \ldots, b_{k}\right)\left(c_{1}, \ldots, c_{l}\right)$ Then the Theorem is saying that

$$
\operatorname{ord}(\sigma)=\operatorname{lcm}(m, k, l)
$$

Let's prove this for any σ.

Observation 1 A cycle of length k has order k, i.e., if $\left(a_{1}, \ldots, a_{k}\right)$ is a cycle then k is the least positive integer such that $\left(a_{1} \ldots a_{k}\right)^{k}=\epsilon$, the identity permutation.
Verify the observation yourself.
Now suppose α is a cycle of length k and β is a cycle of length m which is disjoint from α. Let $l=\operatorname{lcm}(m, k)$. Then $\alpha^{l}=\beta^{l}=\epsilon$, the identity permutation.
Claim:- ord $(\alpha \beta)=l$.
Proof of the dam Since α and β are disjoint, they commute $\Rightarrow(\alpha \beta)^{l}=\alpha^{l} \beta^{l}=\epsilon$.
So we know from Lee. 10 that ord $(\alpha \beta)$ say t, divides l, i.e., $t \mid l$. We want to prove $t=l$.
We have $(\alpha \beta)^{t}=\alpha^{t} \beta^{t}=\epsilon \Rightarrow \alpha^{t}=\beta^{-t}$. But since α and β were disjoint so are
α^{t} and β^{-t}, so if they are equal then they must be the identity permutation ϵ because only then every symbol in at will be fixed by β^{-t} and vice-versa.

So $\alpha^{t}=\epsilon$ and $\beta^{-t}=\epsilon=0 \quad \beta^{t}=\epsilon$. $\Rightarrow \quad k \mid t$ and $m|t \Rightarrow \quad l| t=0 \quad t=l$.
So we proved the theorem in the case when σ is a single cycle or a product of two disjoint cycle. But from Theorem $1, \sigma$ can be written as a product of disjoint cycle and hence vie a similar fashion, we can prove the theorem.

Before we move to any more theorems let's pause for a moment to appreciate the strength of Theorem 3 .

Example 1 Suppose $\sigma \in S_{8}$ and can be written as $\quad \sigma=(123)(56)(48)$
Note that $\left|S_{8}\right|=8!=40320$, so we know that ord $(\sigma) \mid 40320$ but how to find it!! Theorem 3 tells us that $\operatorname{ord}(\sigma)=\operatorname{lcm}(3,2,2)$ $=6$, so simple.

Example 2 Consider S_{7} whose order is 5040. We are interested in finding all the elements of order 3 in S_{7}. We know that is $\sigma \in S_{7}$ with ord $(\sigma)=3$, then in its cycle decompo--sition, it must have lither one cycle of of length 3 , say $\left(a_{1}, a_{2}, a_{3}\right)$ or two cycles of lengths 3, say $\left(a_{1}, a_{2}, a_{3}\right)\left(a_{4}, a_{5}, a_{6}\right)$ as only ie these cases the 1 cm will be 3 .

In the $\left(a_{1}, a_{2}, a_{3}\right)$ case there are 7.6.5 choices but it is counting every element three times as e.g. $(134),(341)$ and (413) are the same elements. So in S_{7}, the number of elements of the form $\left(a_{1}, a_{2}, a_{3}\right)=\frac{7.6 .5}{3}$

$$
=70 .
$$

For elements of the form $\left(a_{1}, a_{2}, a_{3}\right)\left(a_{4}, a_{5}, a_{6}\right)$ there are $\frac{7.6 .5}{3}$ choices for first and $\frac{4.3 .2}{3}$
choices for the second. However, ag ain every element is counted twice as $\left(a_{1}, a_{2}, a_{3}\right)\left(a_{4}, a_{5}, a_{6}\right)$ and $\left(a_{4}, a_{5}, a_{6}\right)\left(a_{1}, a_{2}, a_{3}\right)$ are the some element by Theorem 2 . So in S_{7}, the number of elements of the form $\left(a_{1}, a_{2}, a_{3}\right)\left(a_{4}, a_{5}, a_{6}\right)$ $=\frac{70.8}{2}=280$.

So, there are total $280+70=350$ elements of order Z in S_{7}.

Exercise Find the number of elements of order 6 in S_{7}.

